Restoring Motor Functions in Paralyzed Limbs through Intraspinal Multielectrode Microstimulation Using Fuzzy Logic Control and Lag Compensator
نویسندگان
چکیده
In this paper, a control strategy is proposed for control of ankle movement on animals using intraspinal microstimulation (ISMS). The proposed method is based on fuzzy logic control. Fuzzy logic control is a methodology of intelligent control that mimics human decision making process. This type of control method can be very useful for the complex uncertain systems that their mathematical model is unknown. To increase the stability and speed of the system's response and reduce the steady-state error, we combine the FLC with a lead (lag) compensator. The experiments are conducted on five rats. Microelectrodes are implanted into the spinal cord to provide selective stimulation of plantarflexor and dorsiflexor. The results show that motor functions can be restored using ISMS. Despite the complexity of the spinal neuronal networks and simplicity of the proposed control strategy, our results show that the proposed strategy can provide acceptable tracking control with fast convergence.
منابع مشابه
Restoring Motor Functions in Paralyzed Limbs through Intraspinal Multielectrode Microstimulation Using Fuzzy Logic Control and Lag Compensator
In this paper, a control strategy is proposed for control of ankle movement on animals using intraspinal microstimulation (ISMS). The proposed method is based on fuzzy logic control. Fuzzy logic control is a methodology of intelligent control that mimics human decision-making process. This type of control method can be very useful for the complex uncertain systems that their mathematical model ...
متن کاملAdaptive and intelligent control of permanent magnet synchronous motor (PMSM) using a combination of fuzzy logic and gray wolf algorithm under fault condition
Nowadays, permanent magnet synchronous motors have been widely used in industry due to the elimination of excitation losses, longer life and higher efficiency. Errors in engine and drive systems are unavoidable during operation. Therefore, a suitable scenario should be considered for when these systems fail. If the necessary predictions and control algorithms are not considered for the error co...
متن کاملPerformance Improvement of Direct Torque Controlled Interior Permanent Magnet Synchronous Motor Drives Using Artificial Intelligence
The main theme of this paper is to present novel controller, which is a genetic based fuzzy Logic controller, for interior permanent magnet synchronous motor drives with direct torque control. A radial basis function network has been used for online tuning of the genetic based fuzzy logic controller. Initially different operating conditions are obtained based on motor dynamics incorporating...
متن کاملDesign and PLC Implementation for Speed Control of DC Motor using Fuzzy Logic
In this article, a speed control of DC motor is designed and illustrated using fuzzy logic-based programmable logic controller (PLC). The DC motor is an attractive part of electrical equipment in many industrial applications requiring variable speed and load specifications due to its ease of controllability. The designed system is consisted of three main parts including programmable logic contr...
متن کاملRestoration of motor function following spinal cord injury via optimal control of intraspinal microstimulation: toward a next generation closed-loop neural prosthesis
Movement is planned and coordinated by the brain and carried out by contracting muscles acting on specific joints. Motor commands initiated in the brain travel through descending pathways in the spinal cord to effector motor neurons before reaching target muscles. Damage to these pathways by spinal cord injury (SCI) can result in paralysis below the injury level. However, the planning and coord...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2013